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Abstract

False positive findings are a growing problem in many research literatures.

We argue that excessive false positives often stem from model uncertainty.

There are many plausible ways of specifying a regression model, but

researchers typically report only a few preferred estimates. This raises the

concern that such research reveals only a small fraction of the possible

results and may easily lead to nonrobust, false positive conclusions. It is

often unclear how much the results are driven by model specification and

how much the results would change if a different plausible model were used.

Computational model robustness analysis addresses this challenge by esti-

mating all possible models from a theoretically informed model space. We

use large-scale random noise simulations to show (1) the problem of excess

false positive errors under model uncertainty and (2) that computational

robustness analysis can identify and eliminate false positives caused by

model uncertainty. We also draw on a series of empirical applications to fur-

ther illustrate issues of model uncertainty and estimate instability.

Computational robustness analysis offers a method for relaxing modeling

assumptions and improving the transparency of applied research.
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1. INTRODUCTION

One of the central challenges facing researchers today is the problem of

model uncertainty. Think of an analysis where the goal is to estimate a

true “treatment effect” of a key explanatory variable using a

conditioning-on-observables approach. Researchers do not typically

know what is the underlying “true model”1 that generated their data and

are never sure which exact model specification is best for an unbiased

and efficient estimator of the treatment effect (Leamer 1983; Raftery

1995; Sala-i-Martin 1997; Western 1996; Winship and Western 2016;

Young 2009). However, the number of plausible models researchers

can and do run is often large and prone to becoming a “garden of fork-

ing paths” (Gelman and Loken 2014). Any particular model specifica-

tion represents a complex bundle of modeling assumptions representing

analytic choices among the set of appropriate controls, alternative vari-

able definitions, standard error calculations, as well as possible estima-

tion commands and functional form issues (Young and Holsteen 2017).

The growth of computational power in recent times allows analysts to

select a preferred model after testing the results of hundreds or thou-

sands of model variants. This leaves researchers to explore a wide

model space and select a preferred model among many plausible candi-

dates. Arbitrary refinements to model specification can create false pos-

itive errors—parameter estimates that are statistically significant even

when there is no real relationship in the data.

Some model specifications may yield significant estimates by lever-

aging idiosyncratic aspects of the data—capitalizing on chance associa-

tions rather than real effects. Researchers have incentives to find

statistically significant effects (Brodeur et al. 2016; Gerber et al. 2010;

Glaeser 2008), and through a process of motivated reasoning, they may

be prone to see superior methodology in models that generate signifi-

cant results (Epley and Gilovich 2016). This may explain why there

appears to be an alarming overabundance of false positive, nonreplic-

able results in many social science literatures (Chabris et al. 2012;

Open Science Collaboration 2015; Prinz, Schlange, and Asadullah

2011; Sala-i-Martin, Doppelhofer, and Miller 2004).
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Empirical results are a joint product of both the data and the model-

ing assumptions. There is no assumption-free way of conducting empiri-

cal analysis (Heckman 2005). To draw conclusions based on a single

empirical estimate is to tacitly assume that other plausible specifications

either yield the same result or are incorrect and misleading. It is com-

mon to see footnotes in research articles mentioning alternative specifi-

cations that (inevitably) support the main conclusions. However, this

footnote approach to model uncertainty offers weak and ad hoc evi-

dence of the robustness of the analysis. Social science can and should

have more rigorous standards for examining critical assumptions.

Multimodel analysis and computational robustness testing can help

correct the problems of inflated significance and nonrobust results

(Sala-i-Martin et al. 2004; Young 2009). The approach relies on compu-

tational power to systematically estimate an entire (theoretically

informed) model space, defined by all possible combinations of speci-

fied model ingredients: possible control variables, alternative defini-

tions, estimation commands, functional forms, and standard error

calculations (Young and Hosteen 2017). The output of computational

robustness analysis is a distribution of estimates showing how the para-

meter estimates could change if a different plausible model specifica-

tion were used. An author’s preferred estimate could then be interpreted

in light of the larger modeling distribution of estimates.

We use large-scale simulations with random noise data to show how

model uncertainty can generate inflated significance levels and false

positive results. False positives obtain from seemingly innocuous model

refinement strategies, such as dropping insignificant variables

(Freedman 1983; O’Brien 2017; Raftery 1995). When there are no true

relationships in the data but many variables to choose from, statistically

significant results can be readily found.

However, when false positive results are subjected to computational

robustness testing, many of them are easily rejected as nonrobust. False

positives often hinge on a “knife edge” specification and lose their sig-

nificance in almost any alternative plausible model. Model robustness

analysis helps minimize false positive errors by showing the instability

of the results across other plausible model specifications. Not all false

positives are overturned, but after robustness testing, the false positive

rate is generally at or below the 5 percent rate expected in conventional

statistical tests. In our simulations, robustness analysis corrects the

excess false positives associated with model uncertainty.
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We also draw on empirical applications to illustrate the challenges of

model uncertainty and robustness in practice. We examine a small-N

exploratory study with high levels of model uncertainty (Jung et al.

2014a, which originally showed that “female” hurricanes are more

deadly). We also examine a confirmatory study of how job training pro-

grams affect earnings using a large sample size and drawing on consid-

erable prior research (Dehejia and Wahba 1999; LaLonde 1986). For

the confirmatory study of job training programs, we contrast two sepa-

rate data sets with identical covariates: (1) field experiment data that

address problems such as selection bias through random assignment and

(2) observational data, which depend on covariate adjustment to rule

out spurious relationships and may well be more sensitive to model spe-

cification. In these cases, model robustness analysis sheds important

light on the reliability of the results. These applications help show how

estimate instability identifies likely false positives and establishes more

empirically defensible conclusions.

In the course of this project—testing the model robustness of all false

positives appearing in our simulations—we estimated over 9 billion

regressions. That this is even possible serves as an important reminder:

The current practice of reporting one or two preferred estimates in a

research paper is out of touch with modern computing power. Social

science needs better ways of reporting the multitude of regression para-

meter estimates that authors are able to calculate in the course of applied

research.

1.1. False Positives and Asymmetric Information

Our starting point is a statistical analysis that is oriented toward under-

standing a treatment effect. For example, what is the effect of attending

private school, rather than public school, on learning and educational

attainment? Many applied research questions in sociology take this

form, in which the goal is to understand how a key variable of interest

(e.g., private school attendance) affects a specific outcome (learning).

Often researchers adopt a conditioning-on-observables strategy to esti-

mate a treatment effect: Regression adjustment is used to control for

confounding influences (Heckman 2005; Morgan and Winship 2007).

Control variables are introduced in the regression model with the goal

of obtaining an unbiased and efficient estimator of the true treatment

effect.
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The simple, linear statistical model takes the following form: The out-

come, yi, is given by

yi = b1x1i + fb2x2i + b3x3i + . . . + bkxkig+ ei; ð1Þ

in which x1 is the treatment variable (or variable of interest), and the

treatment effect is given by b1. The challenge of statistical modeling is

to find a set of control variables such that the conditional mean of the

error term is zero—namely, E eijxki = 0½ �.2 Standard proofs that ordinary

least squares (OLS) provides the best linear unbiased estimator of b1

(the true treatment effect) invoke the assumption that the “true model”

for equation (1) is known and applied. In practice, researchers do not

know what the true model is, and they are limited to working with mod-

els that are simply plausible or preferred on some reasonable grounds. It

is also typically the case that many different versions of equation (1)

could be seen as reasonable, especially when we consider the views of

critics and scholarly readers.

A false positive error occurs when researchers report a statistically

significant treatment effect when no such effect actually exists (e.g.,

reporting a significant effect of private school attendance in a world

where private school per se has no real effect on learning). Statistical

conclusions come with a risk of being wrong. By using a p value of .05

for significance tests, researchers accept that they will falsely declare a

null relationship to be significant 5 percent of the time purely by

chance.3 There has been a growing “crisis of science” in recent years of

an excess number of false positives in the scientific literature (Ioannidis

2005; Open Science Collaboration 2015). Many of the findings in fields

as broad as biomedicine, macroeconomics, and behavioral genetics

appear riven with false positives when research is subject to careful

replication testing (Begley and Ellis 2012; Chabris et al. 2012; Sala-i-

Martin et al. 2004). For example, in biomedicine, private industry labs

have reported that 65 percent to 89 percent of “landmark” publications

are based on nonreplicable false positive findings (Begley and Ellis

2012; Prinz et al. 2011).

Something is driving a deep wedge between a statistical test that on

paper has a 5 percent rate of false positives and bodies of published

research with rates of false positives dramatically higher. Model uncer-

tainty is central to the problem of excess false positives. If the “true

model” were known, authors would have to run only one regression. In
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practice, model uncertainty typically leads authors to run many models,

in a process of repeated model refinement. Each tested (but unreported)

model in the refinement process can increase the risk of stumbling on a

false positive result.

The problem emerges most forcefully when only one or two preferred

models are reported. What began as model uncertainty becomes a prob-

lem of asymmetric information between author and reader: Authors

know much more about the sensitivity of the results than readers

(Young 2009), and they may well have strong arguments supporting

their preferred model. However, researchers must openly acknowledge

the risk of confirmation bias and the pressure to publish significant find-

ings (Reason 1995; see reviews in Franco, Malhotra, and Simonovits

2014; Nickerson 1998). In a process of “motivated reasoning,” research-

ers may not be self-consciously aware of a bias in their thinking—they

are actively reasoning their way to a compelling decision that others

could accept (Epley and Gilovich 2016; Kunda 1990). However, with a

different motivation—such as serving as critic rather than author—they

could develop good reasons to favor very different model specifications.

One of the deepest challenges to scientific research is that statistical

significance is partly under the control of the analyst. Readers do not

know how much leeway analysts have in selecting different results to

report. Preferred models are identified after knowing what estimates

they produce. The reported results may be unrepresentative of other

plausible models.

1.2. Model Robustness

To assess the stability of results, we draw on the computational model

robustness framework as formulated (and implemented in Stata) by

Young and Holsteen (2017). The model robustness approach can be

used across many of the common estimation frameworks used in the

social sciences, including OLS, maximum likelihood estimation, panel

data estimators, and others.4 When findings are generated through a

process of successive model refinement—such as dropping nonsignifi-

cant variables—one way to check the credibility of the results is to look

for estimate instability. As Raftery (1995:113) cautions, “the standard

approach of selecting a single model and basing inference on it underes-

timates uncertainty . . . because it ignores uncertainty about model

form” (see also Winship and Western 2016).
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When significant results are discovered by dropping nonsignificant

control variables, the results will tend to fall in and out of significance

with trivial changes to model specification. In contrast, results that are

due to the underlying relationships in a data set tend to be not very sen-

sitive to arbitrary changes in the model. Testing multiple models is not

problematic per se so long as there is transparency about how the esti-

mates vary across those models.

Model robustness analysis tests the stability of an estimate across all

unique combinations of plausible model ingredients within a theoreti-

cally informed model space. Researchers may distinguish between

“necessary” model ingredients, such as certain variables that must be in

the model, and possible/plausible model ingredients, such as controls

that might or might not be used. Suppose we are interested in the effect

of x on y (estimated by b1). We are confident that x2 must be included

in the model as a necessary control but are open to questioning whether

x3 and x4 belong in the true model (and credible arguments could be

made either way). This uncertainty is represented in the following set of

four possible models:

yi = b1x1i + b2x2i + ei ð2Þ

yi = b1x1i + b2x2i + b3x3i + ei ð3Þ

yi = b1x1i + b2x2i + b4x4i + ei ð4Þ

yi = b1x1i + b2x2i + b3x3i + b4x4i + ei: ð5Þ

These four equations represent different reasonable ways of specify-

ing the model given the uncertainty, and they give four plausible esti-

mates of b1. As the number of plausible model ingredients increases,

the model space increases exponentially: With J plausible control vari-

ables, there are 2J unique combinations of those variables. With two

cases of uncertainty (regarding two plausible controls) in the previous

example, there are 22 = 4 unique models. With 12 possible controls,

there are 212 = 4,096 unique models, and with 20 possible controls, there

are more than 1 million unique models. In each unique specification,

the estimated coefficient b1 may be subtly different depending on which

controls are included or not, which is not transparent when reporting a

few point estimates. To what degree do these different regression speci-

fications impact our conclusion regarding the significance of the effect

of x1 on y?
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Once all regressions within the model space are estimated, the result

is a “modeling distribution” of estimated coefficients for the explanatory

variable of interest. This modeling distribution is analogous to the con-

ventional sampling distribution of classical statistics. The sampling dis-

tribution shows how an estimate varies in repeated sampling, addressing

uncertainty about the sample of data (e.g., Efron and Tibshirani 1993).

The modeling distribution shows how the estimate varies in repeated

modeling, addressing uncertainty about the model. Taken together, these

address the two fundamental sources of uncertainty: how an estimate

might change if we took a new sample and how it might change if we

used a different model.

A useful robustness statistic is the total standard error, which is a

measure of both how much the estimate varies across the sampling dis-

tribution and the modeling distribution: the combined sampling and

modeling standard errors. This is used to calculate the “robustness

ratio”: the preferred estimate of b1 divided by the total standard error.

As a simple rule of thumb, a variable is considered to have a robust sta-

tistical relationship with y if the robustness ratio is above a critical value

of 2 (by analogy to the t statistic; see Raftery 1995).

1.3. Contrast with Machine Learning

While this robustness analysis relies on computational power to esti-

mate many models, there are two important differences between robust-

ness analysis and machine learning. First, machine learning is generally

about model selection in high-dimensional space (where conventional

approaches to variable selection are impractical—e.g., when there are

thousands of potential predictor variables). The computational robust-

ness approach, in contrast, does not use an algorithm to select the “best”

model. The robustness framework expects authors to use theory, judg-

ment, and previous research to develop their preferred model—as is

standard practice in applied sociological research.5 The contribution of

robustness analysis is to reveal what alternative parameter estimates can

be found in other plausible models. Do other models readily overturn a

statistical conclusion, or do they offer repeated support? The ideal is to

build a robustness framework that parallels what a task force of diverse

social scientists would find when analyzing the same data with many

different views of what is the better model specification (Young forth-

coming). The fundamental goal is to show readers what is the range of
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possible estimates and reduce the asymmetry of information between

analyst and reader—to distinguish between “knife edge” estimates and

results supported under diverse, credible model assumptions.

Second, machine learning is generally part of a predictive modeling

framework that is not attempting to estimate a specific treatment effect

(b1). Rather, predictive modeling aims simply to predict the outcome

(y), without interest in which variables do the predicting or whether the

coefficients represent real treatment effects. Techniques such as the

LASSO (least absolute shrinkage and selection operator) choose a parsi-

monious set of predictor variables that maximize model fit. The LASSO

is roughly equivalent to selecting variables on the basis of a conserva-

tive t test and dropping variables that are not strongly correlated with y.

This approach does not aim to select the variables that would be most

important in a treatment effects framework (Belloni, Chernozhukov,

and Hansen 2014). A key role of control variables for treatment effects

analysis is to reduce omitted variable bias in the estimated effect (b1).

The LASSO does not accomplish this because it does not take into

account a possible control variable’s correlation with the treatment vari-

able (x1). As the well-known omitted variable bias (OVB) formula tells

us, bias from an omitted variable (say, x3) is driven by the correlation

(x1, x3) just as much as it is by the correlation (y, x3) (Greene 2012).

Maximizing model fit is the wrong criteria for selecting control vari-

ables in a treatment effects analysis because it reflects only a control

variable’s correlation with y. Young and Holsteen (2017) use the com-

putational robustness framework to show how much a control or other

model ingredient empirically changes the estimated treatment effect

(b1). These influence scores would be better criteria for model selection

than fit statistics such as the R2 or the Bayesian Information Criterion

(BIC) when the goal is to understand treatment effects. A LASSO esti-

mator will generally drop a possible control x3 when it has a low corre-

lation with y but a high correlation with the treatment variable x1. Yet

such variables are often the most influential factors in applied analysis

(Young and Holsteen 2017; see also O’Brien 2017; Winship and

Western 2016).

2. TESTING COMPUTATIONAL MODEL ROBUSTNESS

Our first goal is to reduce the number of false positive errors. We build

on a classic simulation study to better understand the problem of false
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positives when analysts engage in model refinement (Freedman 1983).

Using noise-on-noise regressions, we create stylized procedures to simu-

late researcher decisions. The first step is to create a set of variables and

observations using a random number generator. The resulting data set

contains no true causal associations.

In a first-stage regression, all explanatory variables are regressed on

an outcome variable. Next, following Freedman (1983), the least signifi-

cant variables (p . .25) are excluded, and a second-stage regression is

estimated. This reflects uncertainty about which variables should be

included in a model. We extend this simulation and use it to test the util-

ity of model robustness analysis. We show how the rate of false posi-

tives varies systematically by the sample size of the data and the degree

of model uncertainty (in this case, the number of candidate variables

that could be included in the analysis). We then demonstrate how well

model robustness analysis can overturn these false positives. A large

portion of false positives are highly fragile in computational robustness

testing.

Our final objective is to evaluate estimate (in)stability using model

robustness analysis on real data. We use three different empirical data

sets, including a small-N data set that was analyzed with vague theory

and two large-N data sets used in a confirmatory study with strong prior

theory—a field experiment and a cross-sectional analysis.

2.1. Simulation Data and Methods

Our basic simulation strategy is to construct a noise-on-noise regression

analysis. We start by generating a random noise data set. We create 51

variables and 100 observations drawn from a standard normal distribu-

tion: a random-noise outcome, Y , and 50 random-noise explanatory

variables X1, . . . , X50. By construction, none of the X variables have

any true relationship with y. Any statistically significant associations in

the data are false positives, which we expect to see in 5 percent of our

statistical tests due to our chosen significance level of .05.

In the first-stage regression analysis, all the X1, . . . , X50 variables are

included in an initial regression. From these results, we screen out the

least significant variables and retain only those variables that were sig-

nificant at the .25 level for the next stage. Results from one iteration

help to clarify the procedure. We report the full results from a typical

first-stage regression in Table A1 in the Appendix;6 with 50 covariates,
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the table is unwieldly and uninteresting. This first-stage analysis looks,

appropriately, like a noise-on-noise regression. There are 50 explana-

tory variables, and only 3 of those variables are statistically significant,

meaning 6 percent of variables were significant in the first stage

(roughly as expected using a 5 percent significance threshold).7

Along with these three significant variables, another 15 variables

were significant at the “exploratory” .25 level. We retain these for the

second-stage regression, while the other 32 “less significant” variables

are screened out. This simulates a stylized scenario in which researchers

drop variables that seem less relevant.

The second-stage refined model regression results shown in Table 1

look dramatically different from the first stage. There are now nine

Table 1. Regression Results from Second-stage Model, Predicting the
Random Noise Outcome, Y

Second-stage Regression

Variable Estimate Standard Error

X1 .46* (.10)
X2 .51* (.10)
X3 –.22* (.09)
X4 –.17 (.09)
X5 .23* (.10)
X6 –.17 (.09)
X7 –.13 (.10)
X8 –.23* (.09)
X9 .24* (.08)
X10 .18* (.09)
X11 –.14 (.11)
X12 –.18* (.09)
X13 –.13 (.10)
X14 –.14 (.09)
X15 –.15 (.09)
X16 –.19* (.09)
X17 –.16 (.10)
X18 –.16 (.10)
Constant –.04 (.09)
Observations 100
R2 .419

Note: Simulated data with no true associations. First-stage regression used the full 50 explanatory

variables; the second stage (reported here) retained all explanatory variables significant at the .25

level.

*p \ .05.
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variables that achieve statistical significance. This includes the initial

three variables significant in the first-stage regression as well as six

new variables, corresponding to an 18 percent (9/50) “false positive

rate.”8 Based on t tests from the second-stage regression model, this

false positive rate is alarmingly high.

In this simple example, model refinement achieved two critical and

troubling results. First, it inflated the significance of many coefficients

so that nine variables, rather than the initial three, were significant.

Second, it dramatically reduced the apparent number of candidate vari-

ables that were ever considered in the analysis. As a result, the first pass

looked like a noise-on-noise regression, but Table 1 looks like a serious

analysis with a strong set of relevant variables. If we gave these vari-

ables substantive names (e.g., income, religion, or political party affilia-

tion), the table would not look out of place in a major sociology journal,

even though it is based on random noise.

How well can model robustness analysis reduce or eliminate the false

positive errors? We test the model robustness9 of all variables that are

significant at the 5 percent level in the second-stage regression. In Table

1, 9 variables out of the 18 explanatory variables were significant. We

treat each of these 9 variables as a variable of interest and subject each

one of them to robustness testing. For each variable of interest, there are

17 other variables that serve as possible controls, yielding a model space

with 217 = 131,072 unique regression models for each variable tested. In

total, this involved running nearly 1.2 million regressions for this single

iteration of our simulation test.10

To illustrate, Table 2 shows the output from running model robust-

ness analysis on variable X10. While X10 was significant in the second-

stage regression, it is significant in only 5 percent of the thousands of

small variations on that model. The robustness ratio is .89, well below

the “rule of thumb” critical value of 2. Thus, accounting for how the

estimate changes across models leads us to conclude X10 is not robust

and that the statistically significant coefficient found in the second-stage

regression model in Table 2 a likely false positive.

In Table 3, we report the robustness of all the variables from the

second-stage (“final”) regression (in Table 1). For the 18 explanatory

variables retained in the analysis, Table 3 reports (1) the first-stage esti-

mates, (2) the second-stage results, and (3) the robustness measures of

significance rate and robustness ratio. We find that seven out of the nine

variables significant in the second-stage regression were nonrobust
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(including all six that were newly significant in the second-stage model

but not the first regression). These variables had robustness ratios well

below 2, and they were significant in less than 50 percent—and often

less than 5 percent—of the model space. Both X5 and X20 appear robust

as they have robustness ratios greater than 2 and are significant in more

than 90 percent of the models. For the data set as a whole, this gives a

robustness rate of 4 percent (as 2 out of 50 variables were deemed

robustly related to Y). Robustness analysis did not eliminate all false

positives, but it did eliminate the false positive errors generated as a

result of model refinement in the second-stage regression. This illus-

trates how robustness analysis can combat the problem of false

positives.

2.2. Full-scale Simulations

We conducted 5,000 iterations of the aforementioned simulation for

each of 17 unique conditions for data size (from 75 to 2,000 observa-

tions) and degree of model uncertainty (candidate variables from 20 to

90). Each condition involved testing roughly 550 million regressions.

To expedite computation, we used parallel processing in which compu-

tation is distributed across thousands of processors. This allowed us to

run more than 9 billion regressions in the space of several months rather

than almost a decade on a single desktop computer.11

Table 2. Model Robustness of X10

Linear Regression

Variable of interest X10

Outcome variable y1 Number of observations 100
Possible control terms 17 Mean R2 .16
Number of models 131,072 Multicollinearity .24

Model Robustness Statistics Significance Testing Percent

Mean (b) .0928 Sign stability 100
Sampling SE .0926 Significance rate 5
Modeling SE .0464
Total SE .1036 Positive 100

Positive and significance 5
Negative 0

Robustness ratio .8966 Negative and significance 0
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3. SIMULATION RESULTS

How consistently can model robustness analysis eliminate the false posi-

tives that arise after arbitrary model refinement? We first establish how

many false positives systematically arise under such model refinements.

We begin by simulating 5,000 iterations of model refinement on a ran-

dom data set with 50 variables and 100 observations. In the first-stage

regression—before refinement—the average percentage of significant

variables is indeed 5 percent (see boldfaced row from Table 4). After

dropping the least significant variables from this first-stage regression,

however, we find that the false positive rate in the second-stage regres-

sion is 11.3 percent. This shows substantial significance inflation.

Table 3. Comparison of Significance and Robustness Statistics

Robustness

Variable
First-stage

Regressiona
Second-stage
Regression

Significance
Rate (%)

Robustness
Ratio

X1 .54* (.16) .46* (.10) 93 2.36R

X2 .51* (.14) .51* (.10) 100 3.53R

X3 –.30* (.13) –.22* (.09) 2 –.64
X4 –.21 (.13) –.17 (.09) \1 –.59
X5 .23 (.14) .23* (.10) 21 1.43
X6 –.21 (.13) –.17 (.09) \1 –.82
X7 –.25 (.15) –.13 (.10) 2 –1.22
X8 –.22 (.13) –.23* (.09) 1 –1.16
X9 .22 (.13) .24* (.08) 28 1.70
X10 .20 (.12) .18* (.09) 5 .90
X11 –.23 (.15) –.14 (.11) \1 –.74
X12 –.19 (.13) –.18* (.09) 43 –1.92
X13 –.20 (.13) –.13 (.10) \1 –.37
X14 –.19 (.13) –.14 (.09) \1 –.41
X15 –.16 (.13) –.15 (.09) \1 –.55
X16 –.17 (.14) –.19* (.09) \1 –1.09
X17 –.17 (.15) –.16 (.10) \1 –.60
X18 –.17 (.14) –.16 (.10) \1 –.56
Constant –.05 (.13) –.04 (.09)
Observations 100 100
R2 .544 .419

Note: Standard errors in parentheses. R = robust.
aEstimates from full regression with the full set of X1 – X50 variables. Only variables significant

at .25 level are reported for comparison to the second-stage regression and robustness analysis.

*p \ .05.
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In model robustness analysis, however, many of these false positives

appear nonrobust, meaning that their significance is highly dependent on

the exact model specification from the second-stage regression. Compared

with the 11.3 percent false positive variables in the second-stage regression,

only 4.4 percent of the variables are found robust after accounting for how

the estimate changes systematically across the model space. Thus, more

than half of the false positive variables are not robust to the set of possible

controls—a 6.9 percentage point elimination of false positives. Model

robustness analysis effectively eliminated the excess false positive errors

that arose due to (rather arbitrary) model refinement.

3.1. False Positives and Model Robustness across Sample Size

How do the false positive and robustness rates depend on sample size?

Table 4 presents the simulation results where we start by generating data

sets with 75 observations and increase up to a large data set with 2,000

observations while the number of candidate variables is held constant at

50. Figure 1 gives a visual presentation of the results. The dashed line

represents the false positive rate using standard significance tests from

the second-stage regression. The solid line plots the percentage of vari-

ables found to be robust to alternate model specifications. The shaded

area between these two lines corresponds to the quantity of nonrobust

false positive errors (false positives that were eliminated by model

robustness analysis).

Table 4. False Positive and Model Robustness Rates by Sample Size

Number of
Candidate
Variables

Sample
Size

Stage 1
Significance

Rate (%)

Stage 2
Significance

Rate (%)
Robustness
Rate (%)

Total Number
of Regressions

Run

50 75 5.0 11.9 3.6 952,813,303
50 100 5.0 11.3 4.4 850,106,422
50 150 5.0 9.4 4.7 706,011,976
50 200 5.0 8.2 4.7 551,003,368
50 500 5.0 6.1 4.7 360,167,632
50 750 5.1 5.8 4.8 319,617,774
50 1,000 5.1 5.6 4.8 318,600,298
50 2,000 5.0 5.2 4.8 304,287,434

Note: Five thousand iterations. Bold row represents the starting point conditions of our

simulations: 50 variables and 100 observations.
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The rate of false positives for small sample data sets is nearly 12 per-

cent, more than double our expectation of a 5 percent false positive rate

by chance alone. Under our simulations, small data sets are especially

prone to exhibit inflated significance after model refinement. In small-N

data sets, the robustness rate hovers around 5 percent or below. With 75

observations, only about 3.6 percent of variables are robust. Compared

with the 12 percent of variables that are false positives, this translates

into an elimination of about 8.3 percentage points of false positive

errors—a substantial reduction.

As sample size increases, we see the rate of false positives—the

dashed line—steadily drops toward 5 percent. Once sample size reaches

500 or more observations, the rate of false positives ranges from 6.1

percent to a low of 5.2 percent with 2,000 observations. Larger data sets

thus mostly avoid inflated significance errors associated with screening

out nonsignificant variables for a second regression. In a sense, large

data sets are less “twitchy” and less likely to generate false positives. In

these large data sets, the robustness rate remains around 5 percent. Even

though researchers with big data are at a lower risk of discovering false

positives, using model robustness analysis likewise helps ensure a 5 per-

cent error rate or below.

3.2. False Positives and Model Robustness across Degree of

Model Uncertainty

Next, we examine the rates of false positives and model robustness

across the degree of model uncertainty. The number of candidate

Figure 1. Significance and model robustness rates in Stage 2 across sample size.
Note: Five thousand iterations per data point.
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variables is a measure of the extent of model uncertainty: More candi-

date variables mean there are a greater number of possible model speci-

fications (i.e., variables that could be included as a control or not). For

a fixed sample size of 100, we consider model uncertainty rising from

20 to 90 candidate variables.

The results of the simulations are reported in Table 5. Figure 2 gra-

phically depicts the second-stage false positive rate (dashed line) and

robustness rate (solid line) across the number of potential control vari-

ables. The area between the curves reflects the percentage of variables

that are significant but not robust.

At low levels of model uncertainty, there is less severe significance

inflation. With 20 possible controls, 7.6 percent of variables turn out to

be significant (compared with the expected 5 percent). The number of

significant variables peaks at roughly 12 percent when there are between

60 and 75 candidate variables. At very high numbers of candidate vari-

ables, the significance rate declines toward 9 percent. At this point, how-

ever, the number of variables approaches the number of observations.

The robustness rate, in contrast, is uniformly lower than the signifi-

cance rate and declines steadily as the amount of model uncertainty

increases. Model robustness analysis never overturns all false positives,

but it is a clearly higher standard than statistical significance. At low

levels of model uncertainty, many of the significant variables are found

Table 5. False Positive and Model Robustness Rates by Degree of Model
Uncertainty

Number of
Candidate
Variables

Sample
Size

Stage 1
Significance

Rate (%)

Stage 2
Significance

Rate (%)
Robustness
Rate (%)

Total
Number of

Regressions Run

20 100 5.0 7.6 6.4 960,807
30 100 5.0 8.9 5.3 18,693,932
40 100 5.1 10.2 4.7 272,695,876
50 100 5.0 11.3 4.4 850,106,422
60 100 5.0 11.8 3.8 1,192,472,153
70 100 5.1 11.8 3.1 1,177,587,028
75 100 5.1 11.7 2.8 965,930,118
80 100 5.0 10.9 2.4 752,395,175
90 100 5.2 9.4 1.6 305,500,163

Note: Five thousand iterations. Bold row represents the starting point conditions of our

simulations: 50 variables and 100 observations.
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to be robust as well—in part because there is little significance inflation

occurring when model uncertainty is low. However, as uncertainty

increases, model robustness analysis quickly becomes a fruitful strategy

to eliminate false positives. At 40 candidate variables and above, more

than half of false positives are eliminated in robustness analysis. Studies

with greater degrees of uncertainty regarding model specification gain

the most from model robustness analysis.

4. EMPIRICAL DATA AND METHODS

How does model robustness analysis perform with real-world data?

Empirical analysis is an important addition because the simulations are

based on the limiting (and conceptually powerful) case where all of the

potential controls are random noise. In applied data, there is potential

for bias of almost any magnitude or direction from model misspecifica-

tion such as that which includes endogenous controls, using intermedi-

ate outcomes as controls, or other complex causal pathways (Clarke et

al. 2018; Elwert and Winship 2014; Heckman and Navarro-Lozano

2004; Montgomery, Nyhan, and Torres 2016). Our simulations show

that even in the absence of such data conditions, the choice of model

specification can substantially affect the rate of false positives (i.e.,

even when model choice should not lead to specific bias). However, we

Figure 2. Significance and model robustness rates in Stage 2 across
candidate variables.
Note: Five thousand iterations per data point.
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draw on two applications with observed data to elaborate on the simula-

tion results and extend the findings in suggestive ways.

Unlike what happens in simulations, with applied empirical data, the

“true effect” of a variable is not strictly known. Rather than directly

quantifying false positives (which in empirical data is always subject to

debate), we focus on estimate instability—the possibility of finding

(very) different results using other reasonable model specifications.

4.1. Are Female Hurricanes More Deadly? Testing Robustness in

an Exploratory Analysis

A widely reported study in the journal Proceedings of the National

Academy of Sciences (PNAS) found that hurricanes with feminine-

sounding names have higher death tolls than hurricanes with masculine

names (Jung et al. 2014a). The authors argue that residents tend to dis-

miss the destructive potential of storms with feminine names and take

fewer precautions against the danger than when storms have masculine

names.

This study is exploratory. First, there is no prior empirical research

on the topic, so the authors develop a model specification with no past

experience as a guide. Second, there is no established theory connecting

a storm’s death toll with the gender of its name. This blank slate allows

researchers to generate hypotheses after analyzing the data, potentially

drawing a bull’s-eye around the empirical arrow (also known as

HARKing—hypothesizing after the results are known). Third, it is a

small-N study, looking at hurricanes making landfall in the United

States but not in any other country (because scaling up would require

much greater resources). Finally, there is substantial model uncertainty:

There are multiple ways of measuring the same conceptual factors, and

there are many explanatory variables that could have been invoked (or

not) to analyze the hurricanes and the places they affected. In essence,

the number of plausible model specifications for this study a priori

seems large—especially relative to the number of observations.

For our robustness analysis, we draw on a theoretically informed

model space of alternative model ingredients. We incorporate all the

published comments and rejoinders that emerged from the scholarly

debate that followed the hurricane study and published in later issues of

PNAS (Bakkensen and Larson 2014; Christensen and Christensen 2014;

Jung et al. 2014b, 2014c; Maley 2014; Malter 2014). This includes
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different functional forms, treatment of outliers, a range of possible con-

trols, alternative standard error calculations, efforts to address endo-

geneity, and different estimation commands.12 Taking all possible

combinations of the model ingredients, there are 1,152 unique model

specifications.

The first column in Table 6 presents model robustness results from

the Jung et al. (2014a) data. Figure 3 presents a graphical view of the

modeling distribution. The data are strongly concentrated around an

estimate of zero effect of hurricane “femininity.” However, the model-

ing distribution has a positive (rightward) skew, showing that there are

some outlier estimates in which “female” hurricanes have higher death

tolls. While 64 percent of the estimates have a positive sign (as in Jung

et al. 2014a), less than 5 percent of models yield a statistically signifi-

cant effect.

This analysis does not in itself mean that the hurricane study reported

false positive results: That remains debatable (see Jung et al. 2014c).

We do not recommend automatically rejecting results that do not meet

the threshold for robust. Rather, we believe nonrobust results deserve

careful substantive scrutiny to understand why the results depend criti-

cally on a particular model specification. In this case, the majority of

plausible models shows no significant effect of a storm’s “gender.” It is

not that the data support the author’s conclusions—support is driven by

choosing a very exact model specification.

4.2. Empirical Application II: Job Training Programs and

Earnings in Large-N Analysis

What about confirmatory research using bigger data? Are the problems

of estimate instability and false positives less worrisome when a

researcher is armed with large data sets and guidance from previous

research? To explore this, we draw on a classic data set on the labor

market effects of job training programs (Dehejia and Wahba 1999;

LaLonde 1986). The research question is as follows: Do unemployed

workers benefit from participating in job training programs? These pro-

grams can help by providing temporary work experience and counsel-

ing. However, the programs may not help much if the problem is a lack

of available jobs rather than the job-readiness of workers.

We use two data sets for testing the effect of program participation

on reemployment and earnings.13 The first is a field experiment with

20 Muñoz and Young



T
a

b
le

6
.

E
m

p
ir

ic
al

R
o

b
u

st
n

es
s

T
es

ti
n

g

F
em

al
e

H
u

rr
ic

an
e

N
am

es
T

ra
in

in
g

P
ro

g
ra

m
:

F
ie

ld
E

x
p

er
im

en
t

T
ra

in
in

g
P

ro
g

ra
m

:
C

ro
ss

-s
ec

ti
o

n
al

A
n

al
y

si
s

M
o

d
el

R
o

b
u

st
n

es
s

S
ta

ti
st

ic
s

M
ea

n
(b

)
.1

0
1

1
.6

9
2

–
.8

1
5

S
am

p
li

n
g

S
E

.1
7

6
.6

3
6

.5
9

8
M

o
d

el
in

g
S

E
.1

8
0

.0
7

6
2

.6
3

9
T

o
ta

l
S

E
.2

5
1

.6
4

1
2

.7
0

5
R

o
b

u
st

n
es

s
R

at
io

.4
0

0
2

.6
4

0
–

.3
0

1

S
ig

n
if

ic
an

ce
T

es
ti

n
g

(%
)

S
ig

n
st

ab
il

it
y

6
4

1
0

0
6

3
S

ig
n

if
ic

an
ce

ra
te

5
1

0
0

4
1

P
o

si
ti

v
e

6
4

1
0

0
6

3
P

o
si

ti
v

e
an

d
si

g
n

if
ic

an
t

5
1

0
0

1
6

N
eg

at
iv

e
3

6
0

3
8

N
eg

at
iv

e
an

d
si

g
n

if
ic

an
t

0
0

2
5

R
o

b
u

st
n

es
s

T
es

ti
n

g
In

fo
rm

at
io

n

O
u

tc
o

m
e

V
ar

ia
b

le
D

ea
th

s
S

al
ar

y
S

al
ar

y
N

u
m

b
er

o
f

o
b

se
rv

at
io

n
s

9
2

4
4

5
1

6
,1

7
7

M
ea

n
R

2
.1

7
.0

4
.3

5
N

u
m

b
er

o
f

m
o

d
el

s
1

,1
5

2
2

5
6

2
5

6

21



random assignment into job training (n = 445). The second draws on a

cross-sectional sample of workers from the Current Population Survey

(CPS; n = 16,177). Both data sets contained the same set of treatment

and control variables, allowing different models to be identically speci-

fied in both data sets. The major distinction then is that the field experi-

ment attempts to control for bias through randomization (although

random assignment does not ensure the equivalence of treatment and

control groups in any one study—only on average; Deaton and

Cartwright forthcoming). The CPS cross-sectional analysis, in contrast,

is a conditioning-on-observables strategy that depends more directly on

model specification to address concerns about selection bias. We treat

the following control variables as plausible model ingredients: past

wages and unemployment status, age, race, marital status, and educa-

tion. Taking all possible combinations of these variables yields 256

unique model specifications, each of which we apply identically to both

the experimental and observational data sets.

The second column in Table 6 reports our robustness analysis on the

experimental data. The mean estimate is 1.69 (meaning that job training

increases wages), and there is remarkably little variation in the results

Figure 3. Model robustness results on Jung et al. (2014a) data.
Note: Kernel density graph of estimates from 1,152 models. See Table 6 for more

information about the modeling distribution.
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across model specifications. Both the sign stability and the significance

rate are 100 percent. The modeling standard error is only a fraction (12

percent) of the sampling standard error. In other words, with random

assignment to job training, model specification has essentially no influ-

ence on the results. The modeling distribution is essentially a single

spike in estimates, with almost no meaningful variation. The conclu-

sions are given by the data, not by the choice of statistical model.14

The final column in Table 6 reports the model robustness analysis on

the larger but nonexperimental CPS data. The mean estimate is negative

(–.82, meaning that job training reduces earnings). The sign stability is

only 63 percent, and only 41 percent of models are statistically signifi-

cant. Moreover, only 16 percent of the models support the general con-

clusion of the experimental analysis (a positive and significant effect),

and more of the models arrive at the opposite conclusion (25 percent

show a negative and significant effect). Overall, the modeling standard

error (2.64) is more than four times as large as the sampling standard

error (.60).

Figure 4 illustrates how stark the difference is between the two

robustness analyses. The analysis using the field experiment data shows

almost exactly the same results regardless of which controls are in the

model. The cross-sectional analysis, in contrast, allows for a tremen-

dous range of possible estimates, both positive and negative.15 Across

these models, a researcher could easily conclude that the training pro-

gram significantly raises income, lowers income, or has no impact at

all, depending on the preferred model specification.

Several basic conclusions emerge from these empirical analyses.

First, if we regard the experimental results as the “true” effect of the job

training program, then only a handful of possible models from the obser-

vational data report the correct results. It is perhaps encouraging that

any model with observational data can replicate experimental results.

However, it is important to note that the models that replicate experi-

mental findings are not obvious: They include some controls (e.g., past

earnings) but exclude others (e.g., age and marital status). It would be

difficult a priori to know which models would give the correct results.

Without benefit of the experimental evidence, it would be hard to draw

a robust conclusion from the observational data. This may help explain

why the published literature can offer different answers to the same

question.
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Second, the results suggest that some types of analysis allow much

wider variation in possible results than others. This is a point that merits

further research to understand how consistently different types of analy-

sis show greater or lesser estimate instability (e.g., see Ho et al. 2007).

5. DISCUSSION AND CONCLUSION

Model uncertainty is one of the central challenges for social science

researchers in the twenty-first century. Ambiguity and disagreement

about how to best specify statistical models are increasingly a main

source of tension in empirical research. In classical statistical theory, a

single “true model” is assumed to be known prior to seeing the data. In

practice, researchers have only a broad intuition about what is the cor-

rect model, and there are many plausible ways of testing a hypothesis.

The process of formulating a statistical model has been aptly called a

“garden of forking paths” (Gelman and Loken 2014). With modern

computational power, a tremendous number of reasonable models can

be readily tested, but usually only a few are reported (Sala-i-Martin et

al. 2004). Indeed, in the current simulation study, we estimated more

than 9 billion regressions. The mere fact that this is possible highlights

Figure 4. Model robustness results on training program data.
Note: Kernel density graph of estimates from 256 models for each distribution. See

Table 6 for more information about the modeling distributions.
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the reality of computational power today—which is not adequately

reflected in the conventional tables of journal articles. The problem is

one of asymmetric information: Analysts know (or can know) much

more about the sensitivity and stability of the results than readers. The

problem of model uncertainty is that arbitrary modeling choices can

determine the results of empirical analysis. One consequence of this has

been growing skepticism and cynicism about published research—a

concern that many published papers reveal only a fraction of the possi-

ble results and often contain nonrobust, false positive findings

(Ioannidis 2005; Leamer 1983). The challenge calls for greater transpar-

ency about how modeling choices influence reported findings.

We make several key contributions to the understanding of false posi-

tives and unstable estimates in a world of model uncertainty. We

demonstrate that uncertainty about the “true model” can easily lead to a

high number of false positives. We used simulated random noise data

sets with no true statistical relationships so that any significant effects

are by definition a false positive (a failure to reject the null of no effect).

Under model uncertainty, simple strategies of model refinement (drop-

ping insignificant variables) generate a higher rate of false positives

than classical theory assumes. Tests that should have a 5 percent rate of

error often have twice as many false positives. However, when false

positive findings are generated through model refinement, the estimates

tend to be unstable and highly sensitive to arbitrary changes in model

specification. Model robustness analysis, by accounting for variation in

the estimate across model specifications and rejecting highly unstable

estimates, pushes the false positive errors back down to roughly the

expected 5 percent rate.

Our simulations also find that false positives are most inflated when

(1) sample size is low and (2) model uncertainty is high. In the course

of model refinement, small data sets have greater risk of leveraging

idiosyncratic data points to produce false positives. Hence, we describe

small data sets as “twitchy” and prone to attaching significance to vari-

ables in seemingly temperamental ways. Likewise, when model uncer-

tainty is higher—for example, when there are many possible controls to

choose from—the risk of a false positive is substantially higher. Model

uncertainty gives more “researcher degrees of freedom” to discover a

nonrobust significant effect. In such conditions with low sample size

and high model uncertainty, model robustness analysis performs the
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best, identifying highly unstable estimates and overturning the greatest

number of false positives in simulations.

Researchers should be particularly cautious about interpreting the

results from exploratory research. By definition, exploratory research

has less guiding theory to specify the model and usually does not have

the resources to collect large data sets, making such studies doubly

prone to false positive results. This is exemplified in the hurricane

“gender” study: The estimate is highly unstable across plausible model

specifications and rarely achieves significance. The substantive conclu-

sions are derived from a highly specific model selection.

Our simulations with model uncertainty indicate that larger data sets

have a lower risk of false positives. This is an important result that

agrees with findings from meta-analysis (Doucouliagos and Stanley

2009) and supports the routine use of larger scale data in the social

sciences. However, as we show, serious problems of model uncertainty,

estimate instability, and nonrobust results can nevertheless remain in

large data sets. In our empirical case, model robustness analysis sharply

distinguished between observational and experimental methods from

their degree of estimate instability. Subjecting empirical data to model

robustness analysis can help distinguish between credibly true relation-

ships and suspect findings. Careful attention to model robustness and

estimate instability is just as important as statistical significance for

identifying important effects. Ultimately, this calls for a normative

change in how researchers and readers evaluate statistical models.16

We hope that the “pressure to publish” in academia remains tightly

coupled with the goal of producing informative, reliable research. But

with this pressure to publish significant results and an inherent risk of

motivated reasoning, authors can often convince themselves that the

most compelling model specifications are the ones that achieve statisti-

cal significance. In similar form, critics can often convince themselves

that existing research is profoundly flawed and that if the data were in

their hands, completely opposite findings can be easily found. The gap

between these views is due to model uncertainty—the fact that no one

knows the true model—and a lack of transparency about what other rea-

sonable models show. Computational robustness analysis provides a rig-

orous and transparent method to address the problems of inherent model

uncertainty, asymmetric information between analyst and reader, and

the overabundance of false positive research findings.
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APPENDIX

Table A1. Full Regression Results from First Stage

First-stage Regression

X1 .54* (.16)
X2 .51* (.14)
X3 –.30* (.13)
X4 –.21 (.13)
X5 .23 (.14)
X6 –.21 (.13)
X7 –.25 (.15)
X8 –.22 (.13)
X9 .22 (.13)
X10 .20 (.12)
X11 –.23 (.15)
X12 –.19 (.13)
X13 –.20 (.13)
X14 –.19 (.13)
X15 –.16 (.13)
X16 –.17 (.14)
X17 –.17 (.15)
X18 –.17 (.14)
X19 –.14 (.13)
X20 –.15 (.15)
X21 –.13 (.13)
X22 .11 (.12)
X23 .09 (.11)
X24 –.10 (.13)
X25 .10 (.12)
X26 .10 (.13)
X27 .10 (.14)
X28 .08 (.13)
X29 .07 (.13)
X30 .07 (.12)
X31 .05 (.12)
X32 .05 (.12)
X33 –.05 (.13)
X34 .05 (.13)
X35 –.05 (.15)
X36 –.05 (.13)
X37 .05 (.15)
X38 –.05 (.14)
X39 .04 (.14)
X40 .03 (.12)
X41 .03 (.12)
X42 .04 (.14)

(continued)
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Authors’ Note

A replication package, including data and analysis files for the applied section and sam-

ple code for our simulations, is available as an online supplement.
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Notes

1. Unlike true score theory of measurement that an observed score is the result of a

true score plus random error, the true model refers to the true parameterization and

specification of the complex relationships of a given phenomenon and is never

known or perfectly specified by researchers. The uncertainty regarding how best

to approximate this model is what we refer to as model uncertainty.

2. There are many ways to complicate this framework with more nuanced model

specifications. However, this formulation generalizes to other aspects of model

Table A1. (continued)

First-stage Regression

X43 .03 (.15)
X44 .02 (.14)
X45 .01 (.14)
X46 –.01 (.13)
X47 .01 (.15)
X48 .00 (.12)
X49 .00 (.15)
X50 .00 (.13)
Constant –.05 (.13)
Observations 100
R2 .544
df 50

Note: Standard errors in parentheses.

*p \ .05.
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specification as any specification error can be written mathematically as an omitted

variable (Heckman 1979).

3. In contrast, false negative errors occur when variables have a real effect on an out-

come but are not found to be significant. While false negatives are conceptually

important (Esarey and Danneman 2015), there is little appetite in the academic lit-

erature for null findings, and null findings are often difficult to publish (Gerber

et al. 2010; Gerber and Malhotra 2008). Researchers, therefore, already have strong

incentives to dispel false negative errors.

4. The Stata mrobust command is currently compatible with the following estimation

commands: regress, logit, logistic, probit, poisson, nbreg, areg, rreg, xtreg.

5. We examined every article published in the American Journal of Sociology and

American Sociological Review in 2016 to see whether the article made use of a for-

mal model selection algorithm. Only 4.2 percent of quantitative articles invoked a

model selection algorithm. (Additional details are available on request from the

authors.) The predominant framework for developing a model specification in con-

temporary sociology is to draw on theory and existing research.

6. For all tables of the example simulation iteration, variables X 1, . . . , X 50 have been

renamed for ease of interpretation so that X1 represents the most significant vari-

able in the first-stage regression, X23 represents the twenty-third most significant

variable, and so on.

7. On average, there should be 2.5 out of 50 variables, or 5 percent significant at the

.05 p level.

8. We track the number of variables significant at that 5 percent level in this second-

stage regression and take this value and divide by the total number of candidate

variables to calculate a “false positive rate.” The false positive indicates what per-

centage of candidate variables could be found statistically significant even in a

noise-on-noise regression. If model refinement does not bias our results, the false

positive rate should be equal to our chosen significance rate of a standard signifi-

cance test (5 percent). A false positive rate above that 5 percent threshold indicates

we have bias inflating our significance rates.

9. We tested the robustness using the command mrobust in Stata 14.2.

10. Including the first two regressions reported in Table A1 and Table 1, some

1,179,650 total regressions were run ( = 131,072 3 9 + 2) in this example of a

single iteration.

11. Summing total regressions for each data set structure in “Total Number of

Regressions Run” column from Tables 4 and 5 (but counting only the 50 variable,

100 observation data set once) leads to 9.34 billion total regressions.

12. We incorporate the following alternative model ingredients: a different functional

form of femininity (main effect rather than interaction with hurricane damages),

handling of outliers (excluding hurricanes with more than 100 deaths), addressing

potential endogeneity (removing damages as a covariate, adding population in the

year of the storm, or adjusting death count for current population), dealing with

the change in gender naming of storms (dropping data before 1979), different pos-

sible choices of controls (interaction between damages and minimum pressure,

U.S. population during the year of the storm, elapsed years), alternative ways of

estimating the variance-covariance matrix (standard or robust), and an alternative
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type of regression model (negative binomial, or ordinary least squares log-linear

regression).

13. Originally analyzed by LaLonde (1986). We use the data made available in

Dehejia and Wahba (1999), and we follow Athey and Imbens (2015) for the base-

line model specification, which includes prior earnings as covariates.

14. Of course, this does not rule out the possibility that other methods not currently

considered might affect the conclusions in a future, more expansive robustness

analysis.

15. Only a handful of models with observational data approximated the effect in

experimental data, all of which included controls for two prior years of earnings/

unemployment status, education, and race but excluded age and marital status. It is

possible that the variables age and marital status are correlated with other omitted

variables so that including them leverages greater overall bias than excluding them

(Clarke et al. 2018). For further discussion, see Elwert and Winship (2014) on the

problem of conditioning on a collider variable.

16. We thank an anonymous reviewer for making this point.
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